ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Jean-François Jaeger, Donald J. Dudziak, Giorgio Friedrich, Walter V. Green, Peter Groner, Max Huggenberger, Peter Köhler, P. Marmy, Sandro Pelloni, Jiri Stepanek, Ulrich Stiefel, Peter Stiller, M. Victoria
Fusion Science and Technology | Volume 12 | Number 3 | November 1987 | Pages 364-379
Technical Paper | Blanket Engineering | doi.org/10.13182/FST87-A25069
Articles are hosted by Taylor and Francis Online.
A hybrid blanket for a reversed-field pinch (RFP) reactor is presented for breeding 233U from thorium. This study focuses on the shell/blanket design and assumes a plasma like that used by Culham Laboratory (CL) in its designs. The 233U bred helps the important neutron economy and allows the tritium breeding ratio to be 0.96 at beginning of life for a mean of 1.06 for a 9 MW·yr/m2 burnup. A thick conducting shell is assumed for discharge stability and field reversal. This need for a good conductor requires that only pure copper or aluminum or alloys thereof be used. Two designs were investigated, one with a pure copper first wall/shell, the other with an aluminum alloy. In these designs 3.4% of the thorium is converted to 233U. This corresponds to 18.3 tonnes U in both cases for average thermal powers of 4590 and 4450 MW, respectively, at a wall loading of 2.2 MW/m2 during the burn phase. The breeding rates of 233U are, respectively, 0.66 and 0.69 kg/MW·yr, representing ratios of fission events per bred atom of 0.26 and 0.22, which is naturally better than in the fast breeder. In both designs the low metallurgie temperature limit means the large amount of power deposited on and in the shell is not attractive thermodynamically. The resulting large temperature differences in the shell cause high mechanical stresses. The design as it stands is not feasible from the point of view of radiation damage to materials. The pure metal copper shell swells too much (life limit 1.3 to 2 MW·yr/m2), the transmutations limit the electrical life to 3 MW·yr/m2, and low alloys of copper have not yet been irradiated tofluences sufficient for consideration. The aluminum alloy becomes brittle. This and low cycle fatigue each limit the life to 4.5 MW·yr/m2. Further thoughts at CL show that the RFP should work with a thinner shell as well; this would considerably reduce the thermal stresses in the shell and increase its lifetime sufficiently.