ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Johnnie B. Cannon, Clay E. Easterly, Wallace Davis, Jr., Jack S. Watson
Fusion Science and Technology | Volume 12 | Number 3 | November 1987 | Pages 341-353
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST87-A25067
Articles are hosted by Taylor and Francis Online.
Radioactive and nonradioactive effluents will be released routinely during normal operation of near-term commercial fusion power reactors. Nonradioactive effluents will be essentially the same as those released at conventional steam-electric power plants. Radioactive effluents will consist of activated corrosion products and tritium. Most radioactive releases will originate from liquid-waste processing systems and from ventilation systems of various buildings where radioactivity may become airborne. These effluents will have some potential for environmental impact; however, the significance of the impact will depend in part on the concentration and release rate of the effluent. The type of reactor design (e.g., tokamak, mirror, etc.) has minimal influence on activation product releases. Activation products released are influenced primarily by the materials chosen for structural components, and the quantities released are influenced primarily by the coolant choice. The most likely choices for the coolant are water and helium. Preliminary release estimates for water- and helium-cooled fusion reactors are found to be similar to those of fission reactors with the same coolant and of comparable size and structural materials. Data are insufficient to do more than speculate about normal releases from liquid-metal-cooled reactors.