ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Ge-Ping Yu
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 137-144
Technical Paper | Materials Engineering | doi.org/10.13182/FST87-A25057
Articles are hosted by Taylor and Francis Online.
An analysis based on available materials property data has been performed to compare the inelastic response of first-wall structural materials. The first wall is assumed to be operated under the conditions of the pulse surface heat load, coolant pressure, and bombardment from energetic particles. An axisymmetric inelastic stress analysis calculates the long-term redistribution of the stress in a thin-walled plate element of a cylindrical module that is subjected to membrane load. The plate is free to expand but is constrained from bending. The redistribution is caused by inelastic deformation from irradiation creep and swelling. The present effort has concentrated on the performance of two candidate structural materials, namely, Type 316 stainless steel and HT-9 ferritic steel. The results obtained indicate a lower cyclic stress and a lower mean stress for the HT-9 ferritic steel than for stainless steel under the conditions of interest. Therefore HT-9 ferritic steel is quite attractive for future application of the fusion reactor first wall.