ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
Om Prakash Joneja, Vijay R. Nargundkar, Tejen Kumar Basu
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 114-118
Technical Paper | Blanket Engineering | doi.org/10.13182/FST87-A25055
Articles are hosted by Taylor and Francis Online.
The experimentally measured value of 14-MeV neutron multiplication for 10-cm-thick lead in rectangular geometry agrees within 1% of the corresponding calculated value using the MORSE-E code with the Los Alamos National Laboratory 30-group cross-section set CLAW-IV, in P3 scattering approximation. This result is in direct contrast with Takahashi's measurements with lead spheres of 3-, 6-, 9-, and 12-cm radii, where the measured multiplication values are found to be ˜15% higher than the corresponding transport calculations performed using the ANISN and NITRAN codes with the ENDF/B-IV library. However, Monte Carlo calculations using the MORSE-E code with the CLAW-IV library, as well as those of Cheng et al, using the MCNP code with the ENDF/B-V library, agree very well with Takahashi's measurements. Thus, the real difference of leakage neutron multiplication in lead is not between the measurements and the calculations, as reported by Takahashi, but between Takahashi's and other calculations. It is found that by using lead as a neutron multiplier in practical fusion blankets, a 5 to 10% higher neutron multiplication can be obtained than with beryllium for identical configurations of the multiplier.