ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Om Prakash Joneja, Vijay R. Nargundkar, Tejen Kumar Basu
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 114-118
Technical Paper | Blanket Engineering | doi.org/10.13182/FST87-A25055
Articles are hosted by Taylor and Francis Online.
The experimentally measured value of 14-MeV neutron multiplication for 10-cm-thick lead in rectangular geometry agrees within 1% of the corresponding calculated value using the MORSE-E code with the Los Alamos National Laboratory 30-group cross-section set CLAW-IV, in P3 scattering approximation. This result is in direct contrast with Takahashi's measurements with lead spheres of 3-, 6-, 9-, and 12-cm radii, where the measured multiplication values are found to be ˜15% higher than the corresponding transport calculations performed using the ANISN and NITRAN codes with the ENDF/B-IV library. However, Monte Carlo calculations using the MORSE-E code with the CLAW-IV library, as well as those of Cheng et al, using the MCNP code with the ENDF/B-V library, agree very well with Takahashi's measurements. Thus, the real difference of leakage neutron multiplication in lead is not between the measurements and the calculations, as reported by Takahashi, but between Takahashi's and other calculations. It is found that by using lead as a neutron multiplier in practical fusion blankets, a 5 to 10% higher neutron multiplication can be obtained than with beryllium for identical configurations of the multiplier.