ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Om Prakash Joneja, Vijay R. Nargundkar, Tejen Kumar Basu
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 114-118
Technical Paper | Blanket Engineering | doi.org/10.13182/FST87-A25055
Articles are hosted by Taylor and Francis Online.
The experimentally measured value of 14-MeV neutron multiplication for 10-cm-thick lead in rectangular geometry agrees within 1% of the corresponding calculated value using the MORSE-E code with the Los Alamos National Laboratory 30-group cross-section set CLAW-IV, in P3 scattering approximation. This result is in direct contrast with Takahashi's measurements with lead spheres of 3-, 6-, 9-, and 12-cm radii, where the measured multiplication values are found to be ˜15% higher than the corresponding transport calculations performed using the ANISN and NITRAN codes with the ENDF/B-IV library. However, Monte Carlo calculations using the MORSE-E code with the CLAW-IV library, as well as those of Cheng et al, using the MCNP code with the ENDF/B-V library, agree very well with Takahashi's measurements. Thus, the real difference of leakage neutron multiplication in lead is not between the measurements and the calculations, as reported by Takahashi, but between Takahashi's and other calculations. It is found that by using lead as a neutron multiplier in practical fusion blankets, a 5 to 10% higher neutron multiplication can be obtained than with beryllium for identical configurations of the multiplier.