ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jan S. Brzosko, B. V. Robouch, Joanna Klobukowska
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 71-91
Technical Paper | Experimental Device | doi.org/10.13182/FST87-A25052
Articles are hosted by Taylor and Francis Online.
Experiments were carried out in the neutronoptimized mode of the plasma focus operation with small electrode diameters and condenser bank energies of 250, 390, and 490 kJ. The time sequence of the emitted radiation (neutron and gamma) was realized by the time-of-flight (TOF) method using an NE-102A plastic scintillator and silicon detectors viewing X rays from the plasma exclusively. The detectors were operated in the wide-energy window mode. Special attention was given to the interpretation of neutron TOF traces and their comparison with the absorption analysis and previously measured spectra by nuclear plates. The usefulness of gamma rays emitted by (n, n′γ) processes in electrodes is shown to be a precise indicator of the time evolution of the neutron emissivity. These conclusions are based on many shots that were statistically analyzed. Average values are discussed simultaneously with the results of representative single shots. It was found that two (sometimes more) neutron bursts are typical and, in each case, are accompanied by simultaneous hard X rays. The maxima of emissivities coincide with the dI/dt maximum. A theoretical analysis of the results reveals the existence of long time-confined streams of fast electrons and deuterons (effective energy ∼80 keV) with evidence of their slowing down.