ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Terry Kammash, David L. Galbraith
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 11-21
Technical Paper | Fusion Reactor | doi.org/10.13182/FST87-A25049
Articles are hosted by Taylor and Francis Online.
A novel approach to fusion power that combines the favorable aspects of magnetic and inertial confinements has recently been proposed in the “magnetically insulated inertial confinement fusion” (MICF) reactor. In contrast to conventional inertial confinement schemes, this approach relies on generating the needed plasma inside of a spherical shell by zapping the inside surface of a hollow pellet with an intense laser beam. Physical confinement is provided by the metallic shell that surrounds the deuterium-tritium fuel-coated inner surface, while very strong, plasma-generated magnetic fields provide the desired thermal insulation of the plasma from the surrounding surface. Because of these unique properties, the inertial confinement time can be increased by about two orders of magnitude relative to that of conventional inertial confinement schemes, with the result that truly impressive energy multiplication factors can result. Carbon dioxide lasers of hundreds of kilojoules may be readily employed for such reactors, and, since they are relatively efficient and can be chemically driven, these systems lend themselves nicely to such space applications as space-based power sources or rocket propulsion. It is shown that MICF can be utilized as a reactor, producing power in the range of hundreds of kilowatts to tens of megawatts as deemed desirable for space-based power systems. It is also shown that as a rocket propulsion scheme it can produce specific impulses of 1000 s or more, which are required for deep space (and other) missions that cannot be addressed by chemical propulsion.