ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
David B. Harris, Norman A. Kurnit, Dennis D. Lowenthal, Russell G. Berger, John M. Eggleston, James J. Ewing, Mark J. Kushner, Lester M. Waganer, David A. Bowers, David S. Zuckerman
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 705-731
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25044
Articles are hosted by Taylor and Francis Online.
The development of KrF lasers has proceeded from the small lasers invented in 1975 to the 10-kJ large amplifier module at Los Alamos National Laboratory. The future KrF laser-fusion drivers required for inertial confinement fusion (ICF) development and commercial applications, starting with single-main-amplifier laser systems in the 100- to 300-kJ range, through multimegajoule single-pulse target demonstration facilities, to repetitively pulsed drivers for electric power plants are examined. Two different types of KrF lasers are currently being analyzed as potential laser-fusion drivers: large electron-beam (e-beam)-pumped amplifiers using pure optical multiplexing for pulse compression and small e-beam sustained discharge lasers using a hybrid pulse compression technique. Both types of KrF lasers appear able to satisfy all of the requirements for commercial-applications ICF drivers, including cost, efficiency, pulse shaping, energy scaling, repetition rate, reliability, and target coupling. The KrF driver can effectively operate at efficiencies >10% and can contribute < 10 mill/kWh to the cost of electric power production, with the total estimated cost of electricity from either KrF laser system being comparable (25 to 50 mill/kWh, 1985 dollars) with the cost from other methods of electric power production.