ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Louis A. Rosocha, John McLeod, John A. Hanlon
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 624-633
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25039
Articles are hosted by Taylor and Francis Online.
Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies at the Los Alamos National Laboratory. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines either for evacuation or the control of air motion, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering (Rayleigh, aerosol, Raman), absorption by atmospheric gases, thermal gradients and turbulence, beam alignment, and control and optical component figure errors. Practical experience indicates that good beam quality cannot be obtained for modest path lengths (several tens of metres) unless an environmentally isolated beam tube is employed. We examine how these mechanisms affect beam propagation in the Aurora system and report on experiments performed to characterize air as a practical propagation medium.