ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Louis A. Rosocha, John McLeod, John A. Hanlon
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 624-633
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25039
Articles are hosted by Taylor and Francis Online.
Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies at the Los Alamos National Laboratory. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines either for evacuation or the control of air motion, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering (Rayleigh, aerosol, Raman), absorption by atmospheric gases, thermal gradients and turbulence, beam alignment, and control and optical component figure errors. Practical experience indicates that good beam quality cannot be obtained for modest path lengths (several tens of metres) unless an environmentally isolated beam tube is employed. We examine how these mechanisms affect beam propagation in the Aurora system and report on experiments performed to characterize air as a practical propagation medium.