ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Louis A. Rosocha, Kenneth Bruce Riepi
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 576-611
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25037
Articles are hosted by Taylor and Francis Online.
Krypton-fluoride lasers have been shown to be promising candidates for inertial confinement fusion (ICF) drivers. These lasers can be effectively pumped with electrical discharges or energetic electron beams (e beams). With discharge pumping, the laser aperture is limited in size to a few centimetres (at atmospheric pressure) because of discharge instabilities that cause a homogeneous discharge to degenerate into arcs. Much larger aperture lasers can be pumped using relativistic e beams. At Los Alamos National Laboratory (LANL), we are constructing high-energy e-beam-driven KrF lasers with apertures as large as 1 m2 for the ICF program. In designing and building these lasers, a number of physics and engineering issues related to large area electron guns (e guns) must be addressed. Among these issues are the following: generation of the relativistic e beams, transport of the e beams into the laser gas, and design and construction of pulsed power devices for driving the e guns. Cold cathode e guns are found to be useful sources for driving these large volume KrF lasers. Presented are some brief background comments on cold-cathode sources. We will also discuss the cathode current emission mechanisms, basic beam transport considerations, pulsed power devices for powering these e guns, and measured e-gun performance. Particular emphasis is given to practical considerations related to the two main LANL KrF/ICF laser systems: the 10-kJ Aurora system and the 100-kJ power amplifier module design.