ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Akira Suda, Minoru Obara, Akira Noguchi
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 548-559
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25035
Articles are hosted by Taylor and Francis Online.
Atmospheric pressure operation of the electron-beam (e-beam)-excited KrF laser can greatly reduce the design constraints on a large-aperture laser module in the megajoule-class system as an inertial confinement fusion driver. The krypton-rich and Kr/F2 mixtures are suitable for the atmospheric pressure operation because these can produce high specific output energy without serious reduction of the intrinsic efficiency compared with conventional argon-rich mixtures. A 50-ns e-beam generator was used to pump the KrF laser oscillator by which fundamental studies of the KrF laser with atmospheric pressure krypton-rich mixtures were performed. A larger apparatus, using another 65-ns e-beam generator, demonstrated the specific output energy of 6.6 J/ℓ from a Kr/F2 mixture with an intrinsic efficiency of 6%. The latter apparatus was then used as an oscillator-amplifier system to investigate the amplifier characteristics of the KrF laser because the atmospheric pressure krypton-rich mixture is useful for large amplifier modules. In this oscillator-amplifier experiment, the power efficiency (extracted intensity divided by excitation rate and active length) in excess of 10% was obtained for krypton-rich mixtures.