ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
James DeLucia
Fusion Science and Technology | Volume 11 | Number 2 | March 1987 | Pages 429-435
Technical Paper | Vacuum System | doi.org/10.13182/FST87-A25019
Articles are hosted by Taylor and Francis Online.
A method is described for calculating the two-dimensional trajectory of a vertically or horizontally unstable axisymmetric tokamak plasma in the presence of a resistive vacuum vessel The vessel is not assumed to have toroidal symmetry. The plasma is represented by a current-filament loop that is free to move vertically and to change its major radius. Its position is evolved in time self-consistently with the vacuum vessel eddy currents. The plasma current, internal inductance, and poloidal beta can be specified functions of time so that eddy currents resulting from a disruption can be modeled. The vacuum vessel is represented by a set of current filaments whose positions and orientations are chosen to model the dominant eddy current paths. Although the specific application is to the Tokamak Fusion Test Reactor, the present model is of general applicability.