ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
K. Niu, S. Kawata
Fusion Science and Technology | Volume 11 | Number 2 | March 1987 | Pages 365-373
Technical Paper | Fusion Reactor | doi.org/10.13182/FST87-A25014
Articles are hosted by Taylor and Francis Online.
Twelve Marx generators, with a total stored energy of 26.4 MJ and a diode voltage of 10 or 5 MV, supply the energy to diodes to extract proton beams. A combination of two types of diodes is used. One diode type is insulated by the radial magnetic field and extracts the rotating ring beam. The other type is the ordinary magnetically insulated one, from which the proton beam fills the inner hollow part of the rotating beam. The argon gas filling the reactor cavity neutralizes the charge of the proton beams, but does not neutralize the current of the beams. The proton beam pinches to a small radius by the azimuthal magnetic field, and its propagation is stabilized by the axial magnetic field. The cryogenic 6-mm-radius hollow shell target consists of three layers of lead, aluminum, and deuterium-tritium fuel. The target is imposed by a biased voltage of −1 MV in order to focus the proton beams on the target surface. The ion temperature and pR of the fuel after the target implosion reach 4.2 keVand 7.0 g/cm2, respectively. Thus the 2.5-GJ output energy is released from a target. The reactor is an ADLIB type, which consists of an inner rotating cylinder and an outer fixed cylinder. Inside the inner rotating cylinder, the Flibe flows, acting as coolant and tritium breeder. The net plant efficiency is expected to be 33%, and the 800-MW(electric) net power can be supplied from one reactor with a 1-Hz operation frequency.