ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Wennemar A. Brocke
Fusion Science and Technology | Volume 11 | Number 2 | March 1987 | Pages 311-316
Technical Paper | Plasma Engineering | doi.org/10.13182/FST87-A25011
Articles are hosted by Taylor and Francis Online.
In the case of a tokamak, plasma current and plasma equilibrium cannot be controlled independently of each other because the controlled systems involved are coupled. For a practical solution to the coupling problem, so-called decoupling controllers are suggested. To reduce the problem appreciably, a tokamak operation with controlled input currents rather than voltages is assumed. A decoupling controllers design procedure, based on a simple model of the coupled systems, is described, and a method is developed to identify unknown model parameters by evaluating measured time curves of the tokamak currents. Decoupling controllers are designed and successfully incorporated into the feedback loops of the Tokamak Experiment for Technically Oriented Research (TEXTOR) tokamak. Furthermore, the modeling and identification methods are also implemented for the Joint European Torus and the Axially Symmetric Divertor Experiment tokamak yielding results quite similar to those with TEXTOR so that just as useful decoupling controllers could be designed. These results encourage equipping the control systems oftokamaks other than TEXTOR with decoupling controllers and controlled current sources.