ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
J. R. Dean, T. Raimondi
Fusion Science and Technology | Volume 11 | Number 1 | January 1987 | Pages 253-281
Technical Paper | JET Project | doi.org/10.13182/FST87-A25007
Articles are hosted by Taylor and Francis Online.
As Joint European Torus (JET) is used more and more with deuterium and tritium plasmas, the machine will be irradiated by high-energy neutrons to a level that prohibits approach by human beings. All modifications and maintenance will then be carried out by remotely controlled equipment and no further attempt will be made to do hands-on work either directly or through local shielding. The remote handling equipment will comprise a series of special transporters carrying end-effectors and tools. One important transporter is a large articulated boom (arm) with nine axes of motion capable of carrying 1 tonne into the tokamak vacuum vessel and positioning it within a few millimetres. Another is the high-precision 150-tonne crane used during JET construction. These and other transporters will give access to all parts of the machine. The various end-effectors are special motorized attachments to the transporters, enabling them to carry and manipulate heavy components. An important end-effector is the (Mascot-type) force-feedback servomanipulator by which very dexterous operations can be performed and special tools placed and held in position. Most identified remote handling tasks require the combination of dexterity and load carrying provided by the manipulators in conjunction with the transporters. A range of tools, many specially designed because of space and access restrictions and the need for meticulous cleanliness, will include cutting and welding tools, largely automatic and in some cases self-propelling. Many design features have been used on JET to make remote handling possible or easier. For example, ultra-high vacuum-welded joints are made between 2-mm-thick Inconel lips, and bolted vacuum flanges have been specially developed. Remote operations will be viewed through a system of closed circuit television, some cameras being stationary and others carried on transporters. All operations will be controlled from a special central control room. A NORD 100 computer (one of JET's main array) will interconnect the control circuits between equipment and consoles and between cameras and displays. Eventually, it will also provide high-level control input to enhance operator control. Some of the remote handling equipment has been used successfully in support of hands-on work and much more will have been used and proven by the end of 1986 when the tokamak is shut down. Full remote handling will become necessary during 1990.