ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Francesco Scaffidi-Argentina, Mario Dalle Donne, Claudio Ronchi, Claudio Ferrero
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 146-163
Technical Paper | doi.org/10.13182/FST98-A25
Articles are hosted by Taylor and Francis Online.
A new computer code, called ANFIBE (ANalysis of Fusion Irradiated BEryllium), has been developed to describe the most important processes (diffusion, gas precipitation, bubble coalescence, helium-bubble trapping, chemical trapping, etc.) thought to affect gas behavior and swelling in beryllium during fast neutron irradiation. The new model allows the prediction of helium and tritium redistribution, induced swelling, and release. The relevant effects occurring in irradiated beryllium under steady or transient temperature conditions have been considered from a microscopic (lattice and subgranular volume elements), structural (metallographic features of the material), and geometrical (specimen design parameters) point of view.The main results of this validation work represent the second part of the presentation of this model. The relevant beryllium properties published in the literature are presented and critically examined. The performance of the code is assessed by comparing the code predictions with a large set of published experimental data on swelling and gas release in beryllium under fast neutron irradiation.