ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Francesco Scaffidi-Argentina, Mario Dalle Donne, Claudio Ronchi, Claudio Ferrero
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 146-163
Technical Paper | doi.org/10.13182/FST98-A25
Articles are hosted by Taylor and Francis Online.
A new computer code, called ANFIBE (ANalysis of Fusion Irradiated BEryllium), has been developed to describe the most important processes (diffusion, gas precipitation, bubble coalescence, helium-bubble trapping, chemical trapping, etc.) thought to affect gas behavior and swelling in beryllium during fast neutron irradiation. The new model allows the prediction of helium and tritium redistribution, induced swelling, and release. The relevant effects occurring in irradiated beryllium under steady or transient temperature conditions have been considered from a microscopic (lattice and subgranular volume elements), structural (metallographic features of the material), and geometrical (specimen design parameters) point of view.The main results of this validation work represent the second part of the presentation of this model. The relevant beryllium properties published in the literature are presented and critically examined. The performance of the code is assessed by comparing the code predictions with a large set of published experimental data on swelling and gas release in beryllium under fast neutron irradiation.