ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
P. H. Rebut, B. E. Keen
Fusion Science and Technology | Volume 11 | Number 1 | January 1987 | Pages 13-42
Overview | JET Project | doi.org/10.13182/FST87-A24999
Articles are hosted by Taylor and Francis Online.
The background to the decision to build the Joint European Torus (JET) is described, and a brief introduction to the main aims, overall design philosophy, and the planned parameter range of the large tokamak device (major radius R = 2.96 m; horizontal and vertical minor radii a = 1.25 m and b = 2.10 m, respectively; plasma current Ip = 4.8 MA) is provided. JET is situated on the Culham Laboratory site, United Kingdom, and its main objective is to obtain and study plasmas in conditions and with dimensions approaching those needed in a fusion reactor. The main emphasis in the initial operation has been in the ohmic heating phase, in which results have covered a wide range of parameters: plasma currents Ip < 5 MA; toroidal magnetic fields BT = 1.3 to 3.4 T; elongation ratios b/a = 1.2 to 1.7; and safety factor values q = 2.2 to 12. Average electron densities ne = (1 to 4) × 1019 m-3, with high central electron temperatures (Te up to 5 keV) and ion temperatures (Ti up to 4 keV) have been achieved, although Zeff was in the range of 2.5 to 10. Energy confinement times (τE) of up to 0.8 s have been obtained. Some problems with metallic and low-Z impurities are noted, causing high radiation levels. Initial experiments, with ion cyclotron resonance frequency (ICRF) heating of hydrogen and 3He minorities in deuterium plasmas at megawatt levels, are reported. A discussion of certain limitations observed generally in tokamaks and how these might affect future developments of the JET program is presented. Planned future experiments on impurity control, additional heating (ICRF ≈ 15 MW, and neutral injection ≈ 10 MW), and preparations for tritium operation are also described.