ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Jan S. Brzosko, Benjamin V. Robouch, Raffaele De Leo, Ginevra D'Erasmo, Ambrogio Pantaleo, Gigi Skoff, Marisa Alessio, Lucia Allegri, Salvatore Improta
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 253-265
Technical Paper | Tritium System | doi.org/10.13182/FST86-A24977
Articles are hosted by Taylor and Francis Online.
The Advanced Benchmark Experiment (ABE) is a new step in benchmark experiments of fusion reactor technology aimed at examining the effects of non-homogeneities due to the discretization of the reactor blanket into breeder and coolant (confined within stainless tube), as well as to openings in the blanket for vacuum pumping, plasma heating, etc. The organization of the openings and any discretization significantly alter local nuclear parameters, particularly the local tritium breeding ratio (LTBR). Prior to designing an ABE, the practical limits of the quality of the experiment should be established and compared with the expected possibilities of numerical calculations. A study of the state of the art in LTBR measurements is presented. The neutron fluence is measured by the charged associated particle method with the use of ΔE- and E- silicon detectors. The tritium activity induced through nuclear transmutations of lithium isotopes is measured by a very advanced coincidence-anticoincidence system on direct mixtures of LiNO3 water solution and ATOM-LIGHT scintillator (the considered indicator mass is 0.1 g of LiNO3). The experimental results complemented by 3DAMC-VINIA code calculations reveal that in ABEs it is very realistic to expect 3.2% of maximal systematic error, and a statistical error ≅1.5% on LTBR measurements is achievable in most of a hollow sphere (R = 56 cm, r = 20 cm); this can be achieved with 9 days of an accelerator beam (Ed = 0.3 MeV, id = 0.5 mA).