ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
L. J. Wittenberg, J. F. Santarius, G. L. Kulcinski
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 167-178
Technical Paper | Fusion Fuel Cycles | doi.org/10.13182/FST86-A24972
Articles are hosted by Taylor and Francis Online.
An analysis of astrophysical information indicates that the solar wind has deposited an abundant, easily extractable source of 3He onto the surface of the moon. Apollo lunar samples indicate that the moon's surface soil contains ∼109 kg of 3He. If this amount of 3He were to be used in a 50% efficient D-3He fusion reactor, it would provide 107 GW(electric)-yr of electrical power. The energy required to extract 3He from the lunar regolith and transport it to earth is calculated to be ∼2400 GJ/kg. Since the D-3He reaction produces 6 × 105 GJ of energy per kilogram of 3He, the energy payback ratio is ∼250. Implications for the commercialization of D-3He fusion reactors and for the development of fusion power are discussed.