ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Optimizing nuclear plant outages: Data analytics tools and methods for enhancing resilience and efficiency
Nuclear power plant refueling outages are among the most complex phases in a plant’s operational cycle.1 During these outages, tens of thousands of activities, including maintenance and surveillance, are conducted simultaneously within a short timeframe. Typically lasting three to four weeks, these operations involve large crews of contractors with diverse skill sets performing tasks ranging from testing and surveillance to maintenance. Outages may extend longer if major backfitting or modernization projects are planned. Consequently, plant outages are expensive, incurring significant operational costs, such as contractor labor and equipment, as well as the loss of generation while the plant is off line. This can easily cost a plant operator more than $1 million a day. Therefore, there is a constant need to mitigate the economic impact on plants by reducing the frequency, duration, and risks associated with these outages.2,3
L. J. Wittenberg, J. F. Santarius, G. L. Kulcinski
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 167-178
Technical Paper | Fusion Fuel Cycles | doi.org/10.13182/FST86-A24972
Articles are hosted by Taylor and Francis Online.
An analysis of astrophysical information indicates that the solar wind has deposited an abundant, easily extractable source of 3He onto the surface of the moon. Apollo lunar samples indicate that the moon's surface soil contains ∼109 kg of 3He. If this amount of 3He were to be used in a 50% efficient D-3He fusion reactor, it would provide 107 GW(electric)-yr of electrical power. The energy required to extract 3He from the lunar regolith and transport it to earth is calculated to be ∼2400 GJ/kg. Since the D-3He reaction produces 6 × 105 GJ of energy per kilogram of 3He, the energy payback ratio is ∼250. Implications for the commercialization of D-3He fusion reactors and for the development of fusion power are discussed.