ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
L. J. Wittenberg, J. F. Santarius, G. L. Kulcinski
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 167-178
Technical Paper | Fusion Fuel Cycles | doi.org/10.13182/FST86-A24972
Articles are hosted by Taylor and Francis Online.
An analysis of astrophysical information indicates that the solar wind has deposited an abundant, easily extractable source of 3He onto the surface of the moon. Apollo lunar samples indicate that the moon's surface soil contains ∼109 kg of 3He. If this amount of 3He were to be used in a 50% efficient D-3He fusion reactor, it would provide 107 GW(electric)-yr of electrical power. The energy required to extract 3He from the lunar regolith and transport it to earth is calculated to be ∼2400 GJ/kg. Since the D-3He reaction produces 6 × 105 GJ of energy per kilogram of 3He, the energy payback ratio is ∼250. Implications for the commercialization of D-3He fusion reactors and for the development of fusion power are discussed.