ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
George E. Orient, Nasr M. Ghoniem
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1617-1622
Solid Breeder Blanket | doi.org/10.13182/FST86-A24963
Articles are hosted by Taylor and Francis Online.
Mechanical interaction between the solid breeder material and its cladding during power cycles is an important consideration in the design of solid breeder blankets. The analysis presented in the paper gives a design tool for material choices and lifetime prediction for breeder pins. The UCLA solid breeder blanket design is evaluated, and operating conditions are suggested. The material model for the pellet includes linear thermoelastic behavior and swelling. The cladding is assumed to be thin and to exhibit swelling and creep. Two alternate breeder/cladding material pairs have been analyzed, a Li2O/2.25Cr-1Mo and a LiAlO2/9-C design. While high swelling excludes the Li2O/2.25Cr-1Mo design, it is found that in the LiAlO2/9-C case compatibility of thermal expansion between the breeder and the cladding as well as low swelling of the breeder result in less than 0.5% total plastic strain after one year of operation.