ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Robert E. Price, Geoffrey W. Shuy, James T. Woo
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1412-1417
Machine Upgrades and Next-Generation Devices | doi.org/10.13182/FST86-A24926
Articles are hosted by Taylor and Francis Online.
In the present scenario for the development of magnetic confinement fusion, the availability of tritium needed to fuel a D-T burning plasma in order to generate 14 MeV neutrons for material and system component testing is not being fully addressed. An alternate approach based on the in situ generation of tritium in a driven D-D reacting plasma is proposed. The feasibility of this approach to attain 14 MeV neutron flux levels comparable with D-T fueled burning plasma from a modest beta, first generation fusion power reactor can be established from known results. A staged scenario, is described in which tritium bred from developmental blankets is used to fuel the system to incrementally raise the neutron wall loading to simulate more advanced fusion reactors.