ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
S.L. Bogart, C.E. Wagner, N.A. Krall, S. Sedehi, C.F. Weggel, J.A. Dalessandro, T.J. Seed, K.O. Lund
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1404-1411
Machine Upgrades and Next-Generation Device | doi.org/10.13182/FST86-A24925
Articles are hosted by Taylor and Francis Online.
The Demountable Toroidal Fusion Core (DTFC) concept has been analyzed for the Inductively Heated Tokamak (IHT), the Spherical Tokamak (ST), and the Reversed Field Pinch (RFP) for Fusion Engineering Research Facility (FERF) applications. Each of these confinement concepts is viewed as a “core” that is inserted into a surrounding machine envelope including, for example, the outboard toroidal field coil turns, the major poloidal equilibrium coils, blanket and materials testing stations, and a tension-suppression system (precompression) that provides mechanical integrity during the ignition and burn phases. Parametric systems analysis reveals that DTFC FERF operation is possible for all three confinement configurations with the IHT being the most costly and technologically challenging and the RFP being the least costly and, perhaps, least technologically challenging. Future work on the DTFC will be directed toward a Toroidal Physics Optimization Facility.