ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
T.J. Bartel, R.R. Peterson, G.A. Moses
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1253-1258
Inertial Confinement Fusion Target and Reaction Chamber Technology | doi.org/10.13182/FST86-A24903
Articles are hosted by Taylor and Francis Online.
Two-dimensional radiation hydrodynamic simulations of a light ion fusion target generated microfireball in a stratified gas atmosphere have been performed. The target location in a two region cavity was varied with the intent to reduce the overpressure on the diodes at the walls of a target chamber with a single cavity gas. Helium and nitrogen at 15 torr were used as the cavity gases; target explosions of 200 and 800 MJ were investigated. It was found that placing the target in a helium region surrounded by nitrogen could reduce the overpressure by a factor of 2 when compared with a single gas cavity of nitrogen. The surface heat flux was also reduced from a pure helium gas cavity.