ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
D.R. Cohn, L. Bromberg, R.J. Leclaire, R.E. Potok, D.L. Jassby
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1111-1116
Nuclear Technology Experiments and Facilities | doi.org/10.13182/FST86-A24881
Articles are hosted by Taylor and Francis Online.
We discuss a super high field mode of tokamak operation that uses ohmic heating or near ohmic heating to ignition. This approach could also provide high values of nτe, increasing the margin of ignition in deuterium-tritium plasmas, and opening up the possibility of some type of advanced fuel operation. D-He3 operation might be possible if high enough values of β (β ≃ .09) can be obtained. The super high field mode of operation uses very high values of B2a, where B is the magnetic field and o is the minor radius (B2a > 100 T2m). We analyze copper magnet devices with major radii from 1.7 to 3.0 meters. Minimizing or eliminating the need for auxiliary heating has the potential advantages of reducing uncertainty in extrapolating the energy confinement time of current tokamak devices, and reducing engineering problems associated with large auxiliary heating requirements. It may be possible to heat relatively short pulse, inertially cooled tokamaks to ignition with ohmic power alone. However, there may be advantages in using a very small amount of auxiliary power (less than the ohmic heating power) to boost the ohmic heating and provide a faster start-up, especially in relatively compact devices.