ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D.R. Cohn, L. Bromberg, R.J. Leclaire, R.E. Potok, D.L. Jassby
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1111-1116
Nuclear Technology Experiments and Facilities | doi.org/10.13182/FST86-A24881
Articles are hosted by Taylor and Francis Online.
We discuss a super high field mode of tokamak operation that uses ohmic heating or near ohmic heating to ignition. This approach could also provide high values of nτe, increasing the margin of ignition in deuterium-tritium plasmas, and opening up the possibility of some type of advanced fuel operation. D-He3 operation might be possible if high enough values of β (β ≃ .09) can be obtained. The super high field mode of operation uses very high values of B2a, where B is the magnetic field and o is the minor radius (B2a > 100 T2m). We analyze copper magnet devices with major radii from 1.7 to 3.0 meters. Minimizing or eliminating the need for auxiliary heating has the potential advantages of reducing uncertainty in extrapolating the energy confinement time of current tokamak devices, and reducing engineering problems associated with large auxiliary heating requirements. It may be possible to heat relatively short pulse, inertially cooled tokamaks to ignition with ohmic power alone. However, there may be advantages in using a very small amount of auxiliary power (less than the ohmic heating power) to boost the ohmic heating and provide a faster start-up, especially in relatively compact devices.