ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. S. Walker, B. F. Picologlou
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 866-871
Liquid-Metal Blankets and Magnetohydrodynamic Effect | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24846
Articles are hosted by Taylor and Francis Online.
The heat deposition in a blanket is concentrated near the first wall. Uniform liquid-metal velocity in a self-cooled blanket is unattractive, because it leads to low mixed-mean temperature rise through the blanket and reduced power conversion efficiency. The objective of MHD flow control is to use the electromagnetic forces to produce a non-uniform velocity distribution which gives a uniform temperature distribution over the thickness of the blanket. Three methods of MHD flow control are presented here and the MHD pressure drops corresponding to the three methods are compared. One of the methods, although successful at achieving nonuniform velocity profiles, permits a large circulation of electric current which produces a high pressure drop. The analytical results do not indicate a clear choice between the other two methods. The analytical results do point to possible difference in heat transfer performance with the two methods.