ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Keiji Miyazaki, Shoji Inoue, Nobuo Yamaoka, Tomomitsu Horiba, Kazushige Yokomizo
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 830-836
Liquid-Metal Blankets and Magnetohydrodynamic Effects | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST10-830
Articles are hosted by Taylor and Francis Online.
The MHD pressure drop was measured by providing a lithium circulation loop of 40 lit/min and 0.3MPa head with a square test section of 2a=15.7mm × 2b=15.7mm or a rectangular one of 2a=26.8mm × 2b=ll.lmm inner cross-section made of tw=2.1mm thick 304-SS walls. The experiment covered ranges of B=0.2–1.5T (Ha=200–2100), U=0.2–4.0m/sec (Re=500–38000), and TLi=309–380°C. Theoretical prediction was made on an assumption of a uniform electric current density, neglecting the friction with walls. The MHD pressure gradient -dP/dz is given by -dP/dz = KpσfUB2 where Kp= C/(l+a/3b+C) and C=σwtw/σfa. The theory agreed well with the experimental data for both the square and rectangular test sections. Under the ununiform magnetic field of the exit, the pressure drop data agreed with an approximated prediction of Δ P= ∫KpσfUB2(z)dz.