ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
H. Branover, S. Sukorianksy, G. Talmage, E. Greenspan
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 822-829
Liquid-Metal Blankets and Magnetohydrodynamic Effects | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24840
Articles are hosted by Taylor and Francis Online.
Effects of anisotropic turbulence, which can develop in the flow of liquid metal in a transverse magnetic field, on the heat transfer-rate and on self-cooled blanket design and performance are investigated using recent experimental evidence and an approximate analytical model. It is found that the anisotropic turbulence might enhance the heat transfer rate by an order of magnitude without affecting the magnetohydrodynamics pressure drop. The enhanced heat transfer rate opens new interesting possibilities for the design of self-cooled liquid metal blankets, including the possibility of:(l)designing simple yet efficient poloidal-flow blankets, (2) reducing the pressure drop, and (3)increasing the exit coolant temperature and, hence, thermal-to-electrical energy conversion efficiency of conventional blanket concepts. A thorough investigation of the anisotropic turbulent flow phenomena is essential for enabling a realistic assessment of their implications. This investigation ought to include large-scale experiments that enable simulation of realistic fusion reactor conditions.