ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
H. Branover, S. Sukorianksy, G. Talmage, E. Greenspan
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 822-829
Liquid-Metal Blankets and Magnetohydrodynamic Effects | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24840
Articles are hosted by Taylor and Francis Online.
Effects of anisotropic turbulence, which can develop in the flow of liquid metal in a transverse magnetic field, on the heat transfer-rate and on self-cooled blanket design and performance are investigated using recent experimental evidence and an approximate analytical model. It is found that the anisotropic turbulence might enhance the heat transfer rate by an order of magnitude without affecting the magnetohydrodynamics pressure drop. The enhanced heat transfer rate opens new interesting possibilities for the design of self-cooled liquid metal blankets, including the possibility of:(l)designing simple yet efficient poloidal-flow blankets, (2) reducing the pressure drop, and (3)increasing the exit coolant temperature and, hence, thermal-to-electrical energy conversion efficiency of conventional blanket concepts. A thorough investigation of the anisotropic turbulent flow phenomena is essential for enabling a realistic assessment of their implications. This investigation ought to include large-scale experiments that enable simulation of realistic fusion reactor conditions.