ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
D. I. Brown, J. M. Tarrh
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 802-809
Impurity Control | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24838
Articles are hosted by Taylor and Francis Online.
In running TFTR, a desire to improve its capabilities naturally arises. One improvement under consideration is to increase the neutral beam pulse length thereby increasing plasma heating. One of the steps in achieving this is to reduce the heating of the ion dump collector plate by spreading out the neutral beam injector's ion beam impinging on it (Fig. 1). Finding an efficient way of doing this is the subject of the analysis described in this paper. The analysis consists of two major parts. One part, performed at MIT, covers the magnetic performance of the ion dump magnets. The second part, performed at Princeton, covers the particle trajectories and consequent spread patterns of the ion beams on the collector plates. This paper includes a description of the development of the computer models of the magnet, and a comparison of calculated and measured magnetic fields. A description of the approach for analysis of the particle trajectories is given, followed by a comparison of calculated trajectories with measured data. A discussion of the results of analyzing the performance of various alternate magnet configurations is included, followed by a qualitative analysis and discussion relating the numerically determined performance of the various magnet configurations to the basic design parameters in a fundamental manner.