ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Optimizing nuclear plant outages: Data analytics tools and methods for enhancing resilience and efficiency
Nuclear power plant refueling outages are among the most complex phases in a plant’s operational cycle.1 During these outages, tens of thousands of activities, including maintenance and surveillance, are conducted simultaneously within a short timeframe. Typically lasting three to four weeks, these operations involve large crews of contractors with diverse skill sets performing tasks ranging from testing and surveillance to maintenance. Outages may extend longer if major backfitting or modernization projects are planned. Consequently, plant outages are expensive, incurring significant operational costs, such as contractor labor and equipment, as well as the loss of generation while the plant is off line. This can easily cost a plant operator more than $1 million a day. Therefore, there is a constant need to mitigate the economic impact on plants by reducing the frequency, duration, and risks associated with these outages.2,3
D. I. Brown, J. M. Tarrh
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 802-809
Impurity Control | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24838
Articles are hosted by Taylor and Francis Online.
In running TFTR, a desire to improve its capabilities naturally arises. One improvement under consideration is to increase the neutral beam pulse length thereby increasing plasma heating. One of the steps in achieving this is to reduce the heating of the ion dump collector plate by spreading out the neutral beam injector's ion beam impinging on it (Fig. 1). Finding an efficient way of doing this is the subject of the analysis described in this paper. The analysis consists of two major parts. One part, performed at MIT, covers the magnetic performance of the ion dump magnets. The second part, performed at Princeton, covers the particle trajectories and consequent spread patterns of the ion beams on the collector plates. This paper includes a description of the development of the computer models of the magnet, and a comparison of calculated and measured magnetic fields. A description of the approach for analysis of the particle trajectories is given, followed by a comparison of calculated trajectories with measured data. A discussion of the results of analyzing the performance of various alternate magnet configurations is included, followed by a qualitative analysis and discussion relating the numerically determined performance of the various magnet configurations to the basic design parameters in a fundamental manner.