ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
K. Oishi, Y. Ikeda, C. Konno, H. Maekawa, T. Nakamura
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 579-584
Fusion Nucleonics Experiments | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24806
Articles are hosted by Taylor and Francis Online.
Irradiation of concrete aggregates by 14 MeV neutrons was performed to investigate the activation characteristics of concrete, and to verify the calculation code system THIDA using the FNS facility. From the result it was proven that 42K, 24Na, 43K, 48Sc, 47Ca, 46Sc, and 54Mn, in half life order, make an important contribution to the total activity. In addition, a comparison between experiment and calculation was made. For 24Na and 54Mn, whose cross sections were well estimated, good agreement between experiment and calculation was obtained, which proved the validity of the calculational code. For reaction rates caused by calcium and titanium isotopes, however, calculational results that differed from experimental ones between −20 % to +40 % were obtained. This inconsistency was caused by the uncertainty of the cross section around 14 MeV, because the incident neutron energy was almost 14 MeV. Cross section measurements around 14 MeV of these reactions were performed systematically. Since all samples, except 48Ca, were separated isotopes and were irradiated in the same irradiation field, highly precise data with small relative error could be obtained. Consequently, calculations were performed again using measured cross section values, and then agreement between experiment and calculation was improved with ± 10 %.