ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
C. A. Flanagan, T. G. Brown, W. R. Hamilton, V. D. Lee, Y-K. M. Peng, T. E. Shannon, P. T. Spampinato, J. J. Yugo, D. B. Montgomery, L. Bromberg, D. Cohn, R. M. Thome, John C. Commander, Robert H. Wyman, J. A. Schmidt, C. W. Bushnell, J. C. Citrolo, R. B. Fleming, D. Huttar, D. Post, Jr., K. Young, F. A. Puhn, R. Gallix, E. R. Hager, J. R. Bartlit, D. W. Swain
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 491-497
The Compact Ignition Tokamak Program | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24794
Articles are hosted by Taylor and Francis Online.
The Compact Ignition Tokamak (CIT) mission is to achieve ignition and provide the capability to experimentally study burning plasma behavior. A national team has developed a baseline concept including definition of the necessary research and development. The baseline concept satisfies the physics performance objectives established for the project and complies with defined design specifications. To ensure that the mission is achieved, the design requires large magnetic fields on axis ( ∼ 10 T) and use of large plasma currents ( ∼ 10 MA). The design is capable of accommodating significant auxiliary heating to enter the ignited regime. The CIT is designed to operate in plasma parameter regimes that are directly relevant to future fusion power reactors. The CIT uses a high-strength copper-Inconel composite plate toroidal magnet design and relies on inertial cooling starting from a liquid nitrogen temperature at the beginning of each pulse. The design is capable of both limiter and divertor operation. The design is compact (1.22 m major radius, 0.45 m plasma radius), has 20 toroidal field (TF) magnets, and has ten major horizontal access ports, about 20 cm by 80 cm, located between alternate TF coils. A total of 3000 full parameter deuterium-tritium (D-T) pulses and 50,000 partial parameter pulses are planned; each full parameter pulse is about 3–5 s. Significant fusion power (300–400 MW depending on ignition assumptions) will be generated; corresponding neutron wall loadings will be in the range 5–10 MW/m2. The current schedule is for a construction project to be authorized for the period FY 1988–93.