ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Francis Y. Tsang, Yale D. Harker, Robert A. Anderl, David W. Nigg, Dan L. Jassby
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 396-404
Technical Paper | Blanket Engineering | doi.org/10.13182/FST86-A24779
Articles are hosted by Taylor and Francis Online.
The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-kind neutronics experiment involving a toroidal fusion neutron source. Qualification experiments have been conducted to develop primary measurement techniques and verify dosimetry materials that will be used to characterize the neutron environment inside and on the surfaces of the LBM. The deuterium-tritium simulation experiments utilizing a 14-MeV neutron generator and a fusion blanket mockup facility at the Idaho National Engineering Laboratory are described. Results and discussions are presented that identify the quality and limitations of the measured integral reaction data, including the minimum fluence requirement for the TFTR experiment and the use of such data in neutron spectrum adjustment and in predicting integral performance parameters, e.g., tritium production.