ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Lajos L. Lengyel
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 354-363
Technical Paper | Plasma Engineering | doi.org/10.13182/FST86-A24776
Articles are hosted by Taylor and Francis Online.
Results of ignition and continuous fueling scenario calculations are presented that were obtained in the framework of an assessment performed f or the Next European Torus based on International Tokamak Reactor (INTOR) parameters. The results obtained with pellet injection are compared with results corresponding to gas puffing. Pellet injection transports fresh fuel to the reaction zone on a time scale that is much shorter than the diffusion time characterizing the gas puffing method, thus making the method flexible and readily adaptable to different situations. In the case of ignition by pellet injection, it may become possible to have deep neutral beam penetration and maintain favorable heat deposition profiles up to the moment of density ramp-up, thus substantially relaxing beam output requirements. Three beam energies (D0particles) have been considered: 120, 100, and 80 keV. The importance of a proper match between beam characteristics and pellet parameters, specific for the transport scaling assumed (Alcator-INTOR), is shown. In the case of continuous fueling o f an already ignited discharge, the alpha power production notably increases if repetitive pellet injection, instead of gas puffing, is applied. The advantages of pellet injection are substantial, even at moderate pellet velocities.