ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
H. A. B. Bodin, R. A. Krakowski, S. Ortolani
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 307-353
Overview | doi.org/10.13182/FST86-A24775
Articles are hosted by Taylor and Francis Online.
In the reversed-field pinch (RFP), the plasma is confined in an axisymmetric toroidal configuration by a combination of toroidal (Bφ) and poloidal (Bθ) fields with Bθ ≫ Bφ outside the plasma and Bθ ≃ Bφ within the plasma. The essential property of the RFP equilibrium is that it is a near-minimum-energy relaxed state that the plasma finds naturally; the spontaneous generation of reversed toroidal field (dynamo process) is a consequence of this relaxation, and, if the plasma current is maintained, the field generation continues so that the configuration exists as a quasi steady state. Since such equilibria have little free energy to drive instabilities, the system has good stability properties, and, theoretically, confinement at high beta is possible; the plasma current can be sufficiently high to allow the possibility of plasma ignition in deuteriumtritium by ohmic heating alone. Experimentally, values of poloidal beta typically 10% or more are usually observed, and conditions have been found in which the temperature is found to scale approximately linearly with the plasma current up to 0.5 MA; maximum temperatures of the order of 0.5 keV have been observed. This temperature scaling corresponds to a current dependence of the energy confinement time of . Ohmically heated RFP reactors are discussed with emphasis on improved designs with increased power density up to values comparable to those in fission systems. Such compact reactors efficiently utilize normal copper coils and operate at relatively high wall loading. Compact reactors appear to offer significant advantages f or fusion power generation, and it is further shown that the RFP, because beta can be high and confinement is mainly by the poloidal field, offers advantages compared to other systems for compact reactor embodiments. These features also favor unique solutions to the impurity-control problem by the use of high-coverage pump limiters or toroidal magnetic-field divertors. One consequence of the relaxed-state equilibrium is the strong coupling between the poloidal and toroidal circuits through the plasma, offering the possibility of a low-frequency, low-amplitude oscillating-field current drive. The plasma-physics and plasma-engineering basis for the reactor is discussed, and a reactor design point established by extrapolation from the existing physics data base, along with a brief account of reactor optimizations and technological considerations, is given.