ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Sümer Şahin, Tawfik A. Al-Kusayer, Muhammad Abdul Raoof
Fusion Science and Technology | Volume 10 | Number 1 | July 1986 | Pages 84-99
Technical Paper | Blanket Engineering | doi.org/10.13182/FST86-A24749
Articles are hosted by Taylor and Francis Online.
The AYMAN research project has been initiated to formulate the main structure of a prototypical experimental fusion and fusion-fission (hybrid) reactor blanket in cylindrical geometry. This geometry is consistent with most of the current fusion and hybrid reactor design concepts in respect to neutronic considerations. In this project, the fusion chamber is simulated by a cavity with a diameter of ∼1.6 m inside a cylindrical blanket. Fusion neutrons of 14 MeV are produced by a movable target along the axis of the cylinder. The movable neutron source allows simulation of a line source for integral experiments, which is a result of the linear nature of the Boltzmann transport equation. The calculations have shown that a blanket with a 13-cm-thick natural UO2 fuel zone and a 17-cm-thick Li2O zone has a self-sustaining tritium breeding for the fusion driver. By an appropriate dispersion of the Li2O zone inside the graphite reflector, it became possible to decrease the neutron leakage out of the reflector by a factor of 2 to 3 in favor of tritium breeding performance.