ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Steven J. Piet
Fusion Science and Technology | Volume 10 | Number 1 | July 1986 | Pages 31-48
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST86-A24744
Articles are hosted by Taylor and Francis Online.
The potential value of probabilistic risk assessment (PRA) tools to fusion safety and economic issues is discussed. The main results and implications of a systematic examination of these general issues via PRA tools are reported. It is concluded that PRA methodology, tools, and thinking are useful to fusion research in the process of further improving fusion concepts and ideas. The MARS and STARFIRE designs are examined for possible answers to questions posed by using PRA tools. Several general magnetic-fusion design insights result from the study, including the following: 1. possible fault interactions must be minimized by decoupling fault conditions 2. the reliability of the vacuum boundary appears vital to maximizing facility availability and minimizing safety risk 3. economic analyses appear to be incomplete without consideration of potential availability loss from forced outages. A modification to PRA formalism called the “fault interaction matrix” is introduced. The fault interaction matrix contains information concerning what initial fault condition could lead to another fault condition, with what frequency. Thus, the fault interaction matrix represents a way to present and measure the degree to which a designer has decoupled possible fault conditions in his design. Such decoupling is crucial to enhancing fusion safety and facility availability.