ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Steven J. Piet
Fusion Science and Technology | Volume 10 | Number 1 | July 1986 | Pages 7-30
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST86-A24743
Articles are hosted by Taylor and Francis Online.
Achieving inherently safe fusion facilities and conceptual designs is a challenge to the fusion community. Success should provide fusion with important competitive advantages versus other energy technologies. Inherent safety should mean a facility designed with passive safety features such that the public is protected from any acute fatalities under all credible accidental circumstances. A key aspect to inherent safety is demonstrability — the ability to prove that a design is as safe as claimed. Three complementary approaches to achieving inherent safety are examined: toxin inventory reduction, energy source reduction, and design fault tolerance. Four levels of assurance are defined, associated with uncertainty in the words “credible” and “demonstrable.” Sound reasons exist for believing that inherent safety is achievable for fusion. The concept of inherent safety puts a modest upper bound on all accident consequences; it should be considered a part of the collection of safety and environmental issues, which also include lower consequence accidents, waste management, and effluent control.