ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
The Working Group on KARIN-I, A. Mohri, Y. Fujii-E, K. Ikuta, H. Momota, H. Naitou, Y. Nomura, Y. Tomita, M. Ohnishi, K. Yoshikawa, S. Inoue, M. Nishikawa, S.-Inoue Itoh, K. Kitamura, S. Nagao, H. Nakashima, M. Iwamoto, Y. Gomay, M. Kumagai, Y. Kawakita, Y. Suzuki, K. Okamoto, H. Matsunaga, H. Yoshizawa
Fusion Science and Technology | Volume 9 | Number 3 | May 1986 | Pages 422-451
Technical Paper | Fusion Reactor | doi.org/10.13182/FST86-A24730
Articles are hosted by Taylor and Francis Online.
A 650-MW(electric) deuterium-tritium fusion reactor, KARIN-I, has ten moving plasma rings, which are produced by relativistic electron beam injection, heated by a major radius compression, and transported into a linear cylindrical burning section by annularly flowing liquid lithium outside the silicon carbide first wall The liquid lithium not only stabilizes the tilting motion of the rings but also works as the tritium breeder and the main coolant. Energy from the ash-accumulated rings is efficiently recovered at the exit during the major radius expansion. The linear alignment of reactor components ensures easy assembly and disassembly, and also provides for easy maintenance. These features of the reactor result in a net electric output power of 650 MW(electric) with overall plant efficiency of 30%.