ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
H. W. Kugel, H. P. Eubank, T. A. Kozub, M. D. Williams, M. Ulrickson
Fusion Science and Technology | Volume 9 | Number 3 | May 1986 | Pages 401-407
Technical Paper | Plasma Heating System | doi.org/10.13182/FST86-A24728
Articles are hosted by Taylor and Francis Online.
During 2 yr of experimental operations, the Poloidal Divertor Experiment (PDX) inner wall neutral beam graphite armor provided protection for perpendicular heating injections into normal and disruptive plasmas as well as injections in the absence of plasma for special experiments, calibrations, and tests involving the optimization and development of the PDX neutral beam injection system. About 80 to 100 heating injections occurred per operating day, at a 360-s duty cycle, into plasmas of various densities, and typically ~5 to 50% of the injected neutral beam power was transmitted to the armor. More than 103 neutral beam pulses of 100- to 300-ms duration were injected in the absence of plasma at peak power densities of 1.5 to 3 kW/cm2, yielding peak surface temperatures of 950 to 1550°C. There was no significant impurity production attributable to beam heating of the armor, and no observed beam-induced, macroscopic surface damage. Many of the design constraints and performance issues encountered in this work are relevant to the design of larger fusion devices.