ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. A. Abdou, E. L. Vold, C. Y. Gung, M. Z. Youssef, K. Shin
Fusion Science and Technology | Volume 9 | Number 2 | March 1986 | Pages 250-285
Technical Paper | Tritium System | doi.org/10.13182/FST86-A24715
Articles are hosted by Taylor and Francis Online.
Conditions necessary to achieve deuterium-tritium fuel self-sufficiency in fusion reactors are derived through extensive modeling and calculations of the required and achievable tritium breeding ratios as functions of the many reactor parameters and candidate design concepts. It is found that the excess margin in the breeding potential is not sufficient to cover all present uncertainties. Thus, the goal of attaining fuel self-sufficiency significantly restricts the allowable parameter space and design concepts. For example, the required breeding ratio can be reduced by (a) attaining high tritium fractional burnup, >5%, in the plasma, (b) achieving very high reliability, >99%, and very short times, <1 day, to fix failures in the tritium processing system, and (c) ensuring that nonradioactive decay losses from all subsystems are extremely low, e.g., <0.1 % for the plasma exhaust processing system. The uncertainties due to nuclear data and calculational methods are found to be significant, but they are substantially smaller than those due to uncertainties in system definition.