ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
J. Sheffield, R. A. Dory, S. M. Cohn, J. G. Delene, L. Parsly, D. E. T. F. Ashby, W. T. Reiersen
Fusion Science and Technology | Volume 9 | Number 2 | March 1986 | Pages 199-249
Overview | Economic | doi.org/10.13182/FST9-2-199
Articles are hosted by Taylor and Francis Online.
A generic reactor model is used to examine the economic viability of electricity generation by magnetic fusion. The simple model uses components that are representative of those used in previous reactor studies of deuterium-tritium burning tokamaks, stellarators, bumpy tori, reversed-field pinches, and tandem mirrors. Conservative costing assumptions are made. The generic reactor is not a tokamak but rather it is intended to emphasize what is common to all magnetic fusion reactors. The reactor uses a superconducting toroidal coil set to produce the dominant magnetic field. To this extent, it is not as good an approximation to systems, such as the rev er sed-field pinch, in which the main field is produced by a plasma current. The main output of the study is the cost of electricity as a function of the weight and size of the fusion core — blanket, shield, structure, and coils. The model shows that a 1200-MW(electric) power plant with a fusion core weight of ∼10000 tonnes should be competitive in the future with fission and fossil plants. Sensitivity studies that vary the assumptions show that this result is not sensitively dependent on any given assumption. Of particular importance is the result that this scale of fusion reactor may be realized with only moderate advances in physics and technology capabilities.