ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
J. Sheffield, R. A. Dory, S. M. Cohn, J. G. Delene, L. Parsly, D. E. T. F. Ashby, W. T. Reiersen
Fusion Science and Technology | Volume 9 | Number 2 | March 1986 | Pages 199-249
Overview | Economic | doi.org/10.13182/FST9-2-199
Articles are hosted by Taylor and Francis Online.
A generic reactor model is used to examine the economic viability of electricity generation by magnetic fusion. The simple model uses components that are representative of those used in previous reactor studies of deuterium-tritium burning tokamaks, stellarators, bumpy tori, reversed-field pinches, and tandem mirrors. Conservative costing assumptions are made. The generic reactor is not a tokamak but rather it is intended to emphasize what is common to all magnetic fusion reactors. The reactor uses a superconducting toroidal coil set to produce the dominant magnetic field. To this extent, it is not as good an approximation to systems, such as the rev er sed-field pinch, in which the main field is produced by a plasma current. The main output of the study is the cost of electricity as a function of the weight and size of the fusion core — blanket, shield, structure, and coils. The model shows that a 1200-MW(electric) power plant with a fusion core weight of ∼10000 tonnes should be competitive in the future with fission and fossil plants. Sensitivity studies that vary the assumptions show that this result is not sensitively dependent on any given assumption. Of particular importance is the result that this scale of fusion reactor may be realized with only moderate advances in physics and technology capabilities.