ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
W. K. Terry, E. B. Paperman+
Fusion Science and Technology | Volume 9 | Number 1 | January 1986 | Pages 171-187
Technical Paper | doi.org/10.13182/FST86-A24709
Articles are hosted by Taylor and Francis Online.
Summaries are presented of four conceptual design studies for linear magnetic fusion reactors with simplified blankets mainly consisting of liquid metal. These designs form an evolutionary sequence of increasing complexity. The first concept involves a high-density plasma thermally insulated by a magnetic field, but confined by direct contact with a structureless free-surface blanket of liquid metal. The second concept replaces the wall-confined plasma by a lower density magnetically confined field-reversed configuration translated into an axial cavity in a free-surface liquid-metal blanket. The third concept adds a simple cylindrical shell as a first wall. The fourth concept divides the liquid-metal blanket into two regions of differing axial flow speed. Each step in this sequence is motivated by some short-coming in the preceding design; however, the final design continues to appear attractive.