ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Constellation considers advanced nuclear in Maryland
Constellation is considering adding 2,000 MW of nuclear energy at Calvert Cliffs, located on Chesapeake Bay near Lusby, Md., which would effectively double the site’s output, according to the company’s near- and long-term project proposals submitted to the Marland Public Service Commission this week.
W. K. Terry, E. B. Paperman+
Fusion Science and Technology | Volume 9 | Number 1 | January 1986 | Pages 171-187
Technical Paper | doi.org/10.13182/FST86-A24709
Articles are hosted by Taylor and Francis Online.
Summaries are presented of four conceptual design studies for linear magnetic fusion reactors with simplified blankets mainly consisting of liquid metal. These designs form an evolutionary sequence of increasing complexity. The first concept involves a high-density plasma thermally insulated by a magnetic field, but confined by direct contact with a structureless free-surface blanket of liquid metal. The second concept replaces the wall-confined plasma by a lower density magnetically confined field-reversed configuration translated into an axial cavity in a free-surface liquid-metal blanket. The third concept adds a simple cylindrical shell as a first wall. The fourth concept divides the liquid-metal blanket into two regions of differing axial flow speed. Each step in this sequence is motivated by some short-coming in the preceding design; however, the final design continues to appear attractive.