ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Adrian C. Smith, Jr., Gustav A. Carlson, William S. Neef, Jr., Clinton P. Ashworth, Kenneth E. Abreu, Hans H. Fleischmann, Kenneth R. Schultz, Clement P. C. Wong, Dilip K. Bhadra, R. Lewis Creedon, Edward T. Cheng, George R. Hopkins, William Grossmann, Jr., David M. Woodall, Terry Kammash
Fusion Science and Technology | Volume 9 | Number 1 | January 1986 | Pages 136-170
Technical Paper | doi.org/10.13182/FST86-A24708
Articles are hosted by Taylor and Francis Online.
A design of a prototype moving-ring reactor was completed, and a development plan for a pilot reactor is outlined. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (“compact toroids”). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three “burn stations.” Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one-third of the total burn time at each station. Deuteriumthtium-3He ice pellets refuel the rings at a rate that maintains constant radiated power. The fusion power per ring is ∼105.5 MW. The burn time to reach a fusion energy gain of Q = 30 is 5.9 s. The fusion plasma rings are assumed to be of the field-reversed mirror type with some spheromak-like imbedded toroidal magnetic field. A magnetic/thermal energy ratio of one-third and an average 〈β〉 = 0.67 is presumed. Initial plasma ion (electron) temperatures are assumed to be 75 (50) keV, with an initial (final) plasma average radius of 39 (57) cm. The ion energy confinement is assumed to be classical and the electron energy confinement is one-tenth that of the ions. The rings are assumed to be tilt stabilized with ∼20% of the ring current carried by “fast,” axis-encircling particles. The first-wall and tritium breeding blanket designs make credible use of helium-cooling, silicon carbide, and Li2O to minimize structural radioactivity. “Hands-on” maintenance is possible on all reactor components outside the blanket. The first wall and blanket are designed to shut the reactor down passively in the event of a loss-of-coolant or a loss-of-flow accident. Helium removes heat from the first wall, blanket, and shield and is used in a closed-cycle gas turbine to produce electricity. Energy residing in the plasma ring at the end of the burn is recovered via magnetic expansion. Electrostatic direct conversion is not used in this design. The reactor produces a constant net power of 99 MW(electric).