ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Sellafield awards $6B ‘high hazard risk reduction’ framework contract
Sellafield Ltd., the site license company overseeing the decommissioning of the United Kingdom’s Sellafield nuclear site in Cumbria, England, has awarded a 15-year framework contract worth up to £4.6 billion ($6 billion) to support “high hazard risk reduction programs” at the site.
Om Prakash Joneja, Vijay R. Nargundkar
Fusion Science and Technology | Volume 8 | Number 3 | November 1985 | Pages 2721-2726
Technical Note | Blanket Engineering | doi.org/10.13182/FST85-A24693
Articles are hosted by Taylor and Francis Online.
The multilayered blanket concept introduced initially in spherical geometry has been extended to tokamak geometry, which has been approximated by an annular disk geometry for the present calculations. Tritium production is determined, using such commonly available materials as lead, natural lithium, and graphite/water. The Morse-E general geometry package is employed to simulate the blanket geometry and the plasma region where the neutrons are produced. Calculations are performed for both the block- and the multilayered-type blanket configurations. Using water as a moderator/reflector, the multilayered arrangement gives a 75% higher tritium production compared to the block-type blanket with the same overall size of assembly. The advantage in tritium breeding due to the multilayered arrangement remains practically the same when 10 vol% stainless steel structural material is used; however, the absolute value of tritium breeding decreases by 6 to 8%. Calculations are reported for a homogeneous, block, and multilayered arrangement of materials. Using lead, natural lithium, and water in the annular disk geometry, an overall thickness of 35 cm would be sufficient to give tritium breeding of 1.32/source neutron.