ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Om Prakash Joneja, Vijay R. Nargundkar
Fusion Science and Technology | Volume 8 | Number 3 | November 1985 | Pages 2721-2726
Technical Note | Blanket Engineering | doi.org/10.13182/FST85-A24693
Articles are hosted by Taylor and Francis Online.
The multilayered blanket concept introduced initially in spherical geometry has been extended to tokamak geometry, which has been approximated by an annular disk geometry for the present calculations. Tritium production is determined, using such commonly available materials as lead, natural lithium, and graphite/water. The Morse-E general geometry package is employed to simulate the blanket geometry and the plasma region where the neutrons are produced. Calculations are performed for both the block- and the multilayered-type blanket configurations. Using water as a moderator/reflector, the multilayered arrangement gives a 75% higher tritium production compared to the block-type blanket with the same overall size of assembly. The advantage in tritium breeding due to the multilayered arrangement remains practically the same when 10 vol% stainless steel structural material is used; however, the absolute value of tritium breeding decreases by 6 to 8%. Calculations are reported for a homogeneous, block, and multilayered arrangement of materials. Using lead, natural lithium, and water in the annular disk geometry, an overall thickness of 35 cm would be sufficient to give tritium breeding of 1.32/source neutron.