ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Wayne R. Meier, Edward C. Morse
Fusion Science and Technology | Volume 8 | Number 3 | November 1985 | Pages 2665-2680
Technical Paper | Blanket Engineering | doi.org/10.13182/FST85-A24688
Articles are hosted by Taylor and Francis Online.
A method for optimizing the design of a fusion reactor blanket as a function of several design variables is described. Applications of the method are described elsewhere. The optimization problem consists of four key elements: a figure of merit (FOM) for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the FOM subject to the constraints. The FOM and constraints depend on the application and design objectives of the particular reactor concept. In general, they may be functions of the design variables and of the neutronic performance. A direct search, nonlinear simplex method is used to optimize the FOM subject to the constraints. The optimization algorithm requires the evaluation and comparison of the FOM at many different points in the search for the most attractive point. An evaluation of the neutronic performance is required each time a new point (i.e., a new set of design parameters) is chosen for comparison. The neutronic performance is evaluated by successive variational interpolation. With this approach, analytical expressions can be written for the neutronics performance as a function of the design variables based on only a limited number of reference point, neutron transport calculations. Hence, the FOM can be evaluated at any intermediate point without the need for additional transport calculations.