ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
Clement P. C. Wong, Robert F. Bourque, Edward T. Cheng, R. Lewis Creedon, Isaac Maya, Robin H. Ryder, Kenneth R. Schultz
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 114-132
Technical Paper | Blanket Comparison and Selection Study | doi.org/10.13182/FST85-A24677
Articles are hosted by Taylor and Francis Online.
A systematic selection and evaluation of helium-cooled blanket concepts has been performed as part of the Blanket Comparison and Selection Study (BCSS). Helium-cooled Li2O, lithium, LiAlO2/Be, and Flibe/Be blanket concepts were selected for detailed design and evaluation. These concepts are applicable to both tokamak and tandem mirror reactors (TMRs). The design and analysis of Li2O, lithium, and LiAlO2/Be blanket concepts are presented. Previous blanket designs were studied and the pressurized lobe configuration was selected for the helium-cooled BCSS designs. Fifty-four different combinations of structural, breeder, and neutron multiplier materials were considered and four helium-cooled blanket concepts were selected for detailed design and evaluation. Mechanical, thermal, and neutronic designs were developed, and tritium control methods were specified. In the final BCSS evaluation, the Li2O blanket design ranked second for tokamaks and third for TMRs. The lithium blanket design ranked third for tokamaks and fourth for TMRs. To help guide future research and development, the critical issues associated with each of the helium-cooled designs were identified and necessary experimental data highlighted. These data include irradiation behavior of the blanket materials, compatibility between the structure and liquid-metal breeder materials, and the behavior of tritium in a helium-cooled blanket environment. The designs offer favorable performance, design simplicity, and attractive safety features for fusion reactors. Design improvements were identified that could allow still better performance of the helium-cooled blanket designs.