ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yung Sheng Cha, Yousry Gohar, Ahmed M. Hassanein, Saurin Majumdar, Basil F. Picologlou, Dai Kai Sze, Dale L. Smith
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 90-113
Technical Paper | Blanket Comparison and Selection Study | doi.org/10.13182/FST85-A24676
Articles are hosted by Taylor and Francis Online.
Results of the self-cooled, liquid-metal blanket design from the Blanket Comparison and Selection Study (BCSS) are summarized. The objectives of the BCSS project are to (a) define a small number (about three) of blanket concepts that should be the focus of the blanket research and development (R&D) program, (b) identify and prioritize the critical issues for the leading blanket concepts, and (c) provide technical input necessary to develop a blanket R&D program plan. Two liquid metals [lithium and lithium-lead (17Li-83Pb)] and three structural materials [primary candidate alloy (PCA), ferritic steel (FS) (HT-9), and vanadium alloy (V-15 Cr-5 Ti)] are included in the evaluations for both tokamaks and tandem mirror reactors (TMRs). There are major differences in relevant design parameters between a tokamak and a TMR, such as surface heat flux, first-wall erosion rate, and magnetic flux density. As a result, the magneto-hydrodynamic (MHD), heat transfer, and structural requirements for a tokamak reactor are much more stringent than that of a TMR. This has a significant impact on the design philosophy for the blankets. The reference design for the tokamak reactor is the poloidal/toroidal flow module, whereas that for a TMR is of the tube configuration similar to the Mirror Advanced Reactor Study design. Analyses were performed in the following generic areas for each blanket concept: MHD, thermal hydraulics, stress, neutronics, and tritium recovery. Integral analyses were performed to determine the design window for each blanket design. The Li/Li/V blanket for tokamak and the Li/Li/V, LiPb/LiPb/V, and Li7Li/HT-9 blankets for the TMR are judged to be top-rated concepts. In general, the blanket concept of a TMR is ranked higher than that of a tokamak reactor for the same coolant/structural material combination. This is the result of less stringent design requirements for a TMR compared to that of a tokamak reactor. Because of its better thermophysical properties and more uniform nuclear heating profile, liquid lithium is a better coolant than liquid 17Li-83Pb. From an engineering point of view, vanadium alloy is a better structural material than either FS or PCA since the former has both a higher allowable structural temperature and a higher allowable coolant/structure interface temperature than the latter. Critical feasibility issues and design constraints for the self-cooled, liquid-metal blanket concepts are identified and discussed.