ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
Dale L. Smith, Charles C. Baker, Dai Kai Sze, Grover D. Morgan, M. A. Abdou, Steven J. Piet, K. R. Schultz, Ralph W. Moir, James D. Gordon
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 10-44
Overview | Blanket Comparison and Selection Study | doi.org/10.13182/FST85-4
Articles are hosted by Taylor and Francis Online.
The Blanket Comparison and Selection Study (BCSS) was a 2-yr, multilaboratory project initiated by the U.S. Department of Energy/Office of Fusion Energy. Its primary objectives were to (a) define a limited number of blanket concepts that should provide the focus of the blanket research and development (R&D) program, and (b) identify and prioritize critical issues for the leading blanket concepts. The BCSS focused on the mainline approach for fusion reactor development, namely, the D-T-Li fuel cycle, tokamaks and tandem mirror reactors (TMRs) for electrical energy production, and a reactor parameter space that is generally considered achievable with modest extrapolations from the current data base. The STARFIRE and Mirror Advanced Reactor Study reactor and plant designs, with a nominal first-wall neutron load of 5 MW/m2, were used as reference designs for the study. The study focused on