ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R.P. Bell, M.W. Davis, K.Y. Wong, S. Joseph
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2582-2586
Environmental Study | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24668
Articles are hosted by Taylor and Francis Online.
This paper describes the development and verification of a computer code designed to calculate the radiation dose to man following acute or chronic tmospheric releases of tritium gas and oxide from a point source. The Ontario Hydro Tritium Dispersion Code calculates tritium concentrations in air, soil, and vegetation and doses to man resulting from inhalation/immersion and ingestion of food, milk meat and water. The deposition of HT to soil, conversion of HT to HTO by soil enzymes and resuspension of HTO to air have been incorporated into the terrestrial compartment model and are unique features of the code. Sensitivity analysis has identified the HT deposition velocity and the equivalent water depth of the vegetation compartment as two parameters which have a strong influence on dose calculations. Tritium concentrations in vegetation and soil calculated by the code were in reasonable agreement with experimental results. The radiological significance of including the mechanisms of HT to HTO conversion and resuspension of HTO to air is illustrated.