ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. Matsuyama, K. Ichimura, K. Ashida, K. Watanabe, H. Sato
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2461-2466
Material Property and Tritium Control | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24648
Articles are hosted by Taylor and Francis Online.
and
H. Sato
Research and Development Laboratory, Aloka Co. Ltd. 1-22-6 Mure, Mitaka, Tokyo, Japan The contamination of three ionization chambers(Cu, Ni-plated, and Au-plated chambers) due to exposure to HT or HTO was measured. Considerable contamination took place for all of the chambers due to exposure to HTO. This is caused by the physical adsorption of HTO. The extent of the contamination differed from each other (Ni > Au > Cu), being considered due to difference in their surface roughness. In case of the exposure to HT, the Cu-chamber was contaminated in room air, whereas the Ni-chamber did in dry air atmosphere. This is considered due to the adsorption of HTO (being formed with catalytic exchange reaction between HT and H2O) on the Cu-chamber and that of HT on the Ni-chamber. The Au-chamber was not contaminated with the exposure to HT. This is because neither the adsorption of HT nor the catalytic exchange reaction takes place on this surface.