ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. Ichimura, M. Matsuyama, K. Watanabe, T. Takeuchi
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2407-2412
Material Property and Tritium Control | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24639
Articles are hosted by Taylor and Francis Online.
The rates of ab/desorption of water vapor for Zr-V-Fe getter were investigated by means of mass analyzed thermal desorption spectroscopy. The absorption rate obeyed first order kinetics with respect to the pressure of water vapor. The activation energies for absorption were determined as 1.8 (H2O), 2.7 (D2O), and 3.2 (T2O) kcal/mol. Only hydrogen was desorbed by heating the getter in which water was absorbed. The desorption obeyed second order kinetics with respect to the amount of absorption. The activation energies for desorption were determined as 28.0 (H2O), 28.6 (D2O), and 29.3 (T2O) kcal/mol. It is concluded that the rate determining step for absorption is the dissociation reaction of adsorbed water molecules or hydroxyl groups on the surface. The rate determining step for desorption is the association reaction of hydrogen atoms which diffuse from the bulk to the surface.