ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Michael Schuller, Theodore A. Parish
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2127-2132
Blanket and Process Engineering | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24598
Articles are hosted by Taylor and Francis Online.
An aqueous slurry of heavy water and lithium containing solids was examined to assess its merits as the tritium breeding, neutron attenuating, and heat removing portion of a first generation D-T fusion reactor. The results of experimentation and a related computer study are reported here. The numerical and experimental work done indicates a heavy water slurry can breed and retain within the solid particles sufficient tritium to fuel a D-T reactor. Experimental results reported here indicate that the LiF will retain tritium for a period of several days at room temperature. Tritium recoil losses were up to 30% higher than predicted. Tritium release rates from the heated solids were low up to 525°C, but increased rapidly above that temperature.